GRAF

Assalamualaikum wr.wb



GRAF



 Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut.
Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya yang menghubungkan sejumlah kota di Provinsi Jawa Tengah.

 
 
DEFINISI GRAF
Graf G = (V, E), yang dalam hal ini:    
V  = himpunan tidak-kosong dari simpul-simpul (vertices)
     = { v1 , v2 , ... , vn }     
E = himpunan sisi  (edges) yang menghubungkan sepasang simpul
    = {e1 , e2 , ... , en }
 
JENIS-JENIS GRAF
  • Berdasarkan ada tidaknya gelang atau sisi ganda pada suatu graf, maka graf digolongkan menjadi dua jenis:
  1. 1. Graf sederhana (simple graph). Graf yang tidak mengandung gelang maupun sisi-ganda dinamakan graf sederhana.
  2. 2. Graf tak-sederhana (unsimple-graph).  Graf yang mengandung sisi ganda atau gelang dinamakan  graf tak-sederhana (unsimple graph).
  • Berdasarkan orientasi arah pada sisi, maka secara umum graf  dibedakan atas 2 jenis :      
  1. 1.  Graf tak-berarah (undirected graph) Graf yang sisinya tidak mempunyai orientasi arah disebut graf tak-berarah.  
  2. 2.  Graf berarah (directed graph atau digraph)     Graf yang setiap sisinya diberikan orientasi arah disebut sebagai graf berarah.
Terminologi Graf

1. Ketetanggaan (Adjacent) Dua buah simpul dikatakan bertetangga bila keduanya terhubung  langsung. 
Tinjau graf G1 : simpul 1 bertetangga dengan simpul 2 dan 3,
                           simpul 1 tidak bertetangga dengan simpul 4.
                           
2. Bersisian (Incidency) Untuk sembarang sisi e = (vj, vk) dikatakan 
                             e bersisian dengan simpul vj , atau 
                             e bersisian dengan simpul vk  
Tinjau graf G1: sisi (2, 3) bersisian dengan simpul 2 dan simpul 3,        
                          sisi (2, 4) bersisian dengan simpul 2 dan simpul 4,     
                          tetapi sisi (1, 2) tidak bersisian dengan simpul 4.
3. Simpul Terpencil (Isolated Vertex) Simpul terpencil ialah simpul yang tidak mempunyai sisi yang  bersisian dengannya. 
Tinjau graf G3: simpul 5 adalah simpul terpencil.
4. Graf  Kosong (null graph atau empty graph) Graf yang himpunan sisinya merupakan himpunan kosong (Nn).  Graf N5 :

5. Derajat (Degree) Derajat suatu simpul adalah jumlah sisi yang bersisian dengan simpul tersebut. Notasi: d(v)
Tinjau graf G1:  d(1) = d(4) = 2   
                           d(2) = d(3) = 3
Tinjau graf G3: d(5) = 0 simpul terpencil
                          d(4) = 1 simpul anting-anting (pendant vertex)
Tinjau graf G2: d(1) = 3 bersisian dengan sisi ganda
                          d(2) = 4 bersisian dengan sisi gelang (loop) 

 Pada graf di atas, derajat setiap simpul ditunjukkan pada masing-masing simpul
Tinjau graf G4:  din(1) = 2; dout(1) = 1  
                           din(2) = 2; dout(2) = 3 
                           din(3) = 2; dout(3) = 1  
                           din(4) = 1; dout(3) = 2
6. Lintasan (Path) Lintasan yang panjangnya n dari simpul awal v0 ke simpul tujuan vn di dalam graf    G ialah barisan berselang-seling simpul-simpul dan sisi-sisi yang berbentuk v0, e1, v1, e2, v2,... ,      vn –1, en, vn sedemikian sehingga e1 = (v0, v1), e2 = (v1, v2), ... , en = (vn-1, vn) adalah sisi-sisi    dari graf G.
Tinjau graf G1: lintasan 1, 2, 4, 3 adalah lintasan dengan barisan sisi (1,2), (2,4), (4,3).
Panjang lintasan adalah jumlah sisi dalam lintasan tersebut. Lintasan 1, 2, 4, 3 pada G1 memiliki panjang 3. 
7. Siklus (Cycle) atau Sirkuit (Circuit) Lintasan yang berawal dan berakhir pada simpul yang sama   disebut sirkuit atau siklus.
Tinjau graf G1: 1, 2, 3, 1 adalah sebuah sirkuit.
Panjang sirkuit adalah jumlah sisi dalam sirkuit tersebut. Sirkuit 1, 2, 3, 1 pada G1 memiliki panjang 3.
8. Terhubung (Connected) Dua buah simpul v1 dan simpul v2 disebut terhubung jika terdapat lintasan dari v1 ke v2.  G disebut graf terhubung (connected graph) jika untuk setiap pasang simpul vi dan vj dalam himpunan V terdapat lintasan dari vi ke vj.  Jika tidak, maka G disebut graf tak-terhubung (disconnected graph). 

Contoh graf tak-terhubung:
  • Graf berarah G dikatakan terhubung jika graf tidak berarahnya terhubung (graf tidak berarah dari G diperoleh dengan menghilangkan arahnya).
  • Dua simpul, u dan v, pada graf berarah G disebut terhubung kuat (strongly connected) jika terdapat lintasan berarah dari u ke v dan juga lintasan berarah dari v ke u. 
  • Jika u dan v tidak terhubung kuat tetapi terhubung pada graf tidak berarahnya, maka u dan v dikatakan terhubung lemah (weakly coonected).  
  • Graf berarah G disebut graf terhubung kuat (strongly connected graph) apabila untuk setiap pasang simpul sembarang u dan v di G, terhubung kuat. Kalau tidak, G disebut graf terhubung lemah. 
8. Upagraf (Subgraph) dan Komplemen Upagraf Misalkan G = (V, E) adalah sebuah graf. G1 = (V1,  E1) adalah upagraf (subgraph) dari G jika V1   V dan E1  E.
Komplemen dari upagraf G1 terhadap graf G adalah graf G2 = (V2, E2) sedemikian sehingga E2 = E- E1 dan V2 adalah himpunan simpul yang anggota-anggota E2 bersisian dengannya.  
Komponen graf (connected component) adalah jumlah maksimum upagraf terhubung dalam graf G.
Graf G di bawah ini mempunyai 4 buah komponen. 
 
Pada graf berarah, komponen terhubung kuat (strongly connected component) adalah jumlah maksimum upagraf yang terhubung kuat. 

Graf di bawah ini mempunyai 2 buah komponen terhubung kuat:
9. Upagraf Rentang (Spanning Subgraph) Upagraf G1 = (V1, E1) dari G = (V, E) dikatakan upagraf rentang jika V1 =V (yaitu G1 mengandung semua simpul dari G). 
 
10. Cut-Set Cut-set dari graf terhubung G adalah himpunan sisi yang bila dibuang dari G menyebabkan G tidak terhubung. Jadi, cut-set selalu menghasilkan dua buah komponen.
Pada graf di bawah, {(1,2), (1,5), (3,5), (3,4)} adalah cut-set. Terdapat banyak cut-set pada sebuah graf terhubung.
Himpunan {(1,2), (2,5)} juga adalah cut-set, {(1,3), (1,5), (1,2)} adalah cut-set, {(2,6)} juga cut-set,
tetapi {(1,2), (2,5), (4,5)} bukan cut-set sebab himpunan bagiannya, {(1,2), (2,5)} adalah cut-set. 
11. Graf Berbobot (Weighted Graph) Graf berbobot adalah graf yang setiap sisinya diberi sebuah harga (bobot).

 

Comments

Popular posts from this blog

MAKALAH DEBIAN - LINUX

7 SEGMENT ANODA & KATODA

GRAF PLANAR